*Memos:
- My post explains RandomApply().
- My post explains RandomInvert().
- My post explains CenterCrop().
- My post explains Pad().
- My post explains OxfordIIITPet().
Compose() can apply one or more transformations to an image as shown below:
*Memos:
- The 1st argument for initialization is
transforms
(Required-Type:tuple
/list
(transform)): *Memos:- The transforms are applied from the 1st index in order.
- It must be at least one transformation.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
). *Don't useimg=
. -
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import Compose
from torchvision.transforms.v2 import RandomInvert
from torchvision.transforms.v2 import RandomVerticalFlip
from torchvision.transforms.v2 import CenterCrop
from torchvision.transforms.v2 import Pad
c = Compose(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)])
c
# Compose(RandomInvert(p=1)
# RandomVerticalFlip(p=1)
# CenterCrop(size=(200, 200))
# Pad(padding=20, fill=0, padding_mode=constant))
c.transforms
# [RandomInvert(p=1),
# RandomVerticalFlip(p=1),
# CenterCrop(size=(200, 200)),
# Pad(padding=20, fill=0, padding_mode=constant)]
origin_data = OxfordIIITPet(
root="data",
transform=None
)
# `ri` is RandomInvert() and `rv` is RandomVerticalFlip().
# `cc` is CenterCrop() and `pad` is Pad().
ri_rv_cc_pad_data = OxfordIIITPet(
root="data",
transform=Compose(transforms=[RandomInvert(p=1),
RandomVerticalFlip(p=1),
CenterCrop(size=200),
Pad(padding=20)])
)
ri_rv_pad_cc_data = OxfordIIITPet(
root="data",
transform=Compose(transforms=[RandomInvert(p=1),
RandomVerticalFlip(p=1),
Pad(padding=20),
CenterCrop(size=200)])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=ri_rv_cc_pad_data, main_title="ri_rv_cc_pad_data")
show_images1(data=ri_rv_pad_cc_data, main_title="ri_rv_pad_cc_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, t=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if main_title != "origin_data":
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
c = Compose(transforms=t)
plt.imshow(X=c(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="ri_rv_cc_pad_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)])
show_images2(data=origin_data, main_title="ri_rv_pad_cc_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
Pad(padding=20), CenterCrop(size=200)])