Integrating OpenAI's Retrieval-Augmented Generation (RAG) in a .NET application involves several steps, including setting up a local embedding vector database, processing PDF documents using PdfPig, and leveraging the OpenAI SDK along with Microsoft.Extensions.AI for unified AI abstractions. Here’s a step-by-step guide to achieve this integration:
Step 1: Setup Environment
Prerequisites:
- .NET 6 or higher installed.
- A C# development environment (Visual Studio, VS Code, or .NET CLI).
- An OpenAI API Key for accessing OpenAI services.
- PdfPig for PDF text extraction.
- Microsoft.Extensions.AI for unified AI abstractions.
Install Required Packages:
dotnet add package OpenAI
dotnet add package PdfPig
dotnet add package Microsoft.Extensions.AI
dotnet add package Microsoft.Extensions.AI.OpenAI
Step 2: Extract Text from PDFs Using PdfPig
Extract text from PDFs to create chunks for embedding generation.
using PdfPig;
// Load PDF
using var pdfDocument = PdfDocument.Open("path/to/your/document.pdf");
// Extract text
var text = string.Join("\n", pdfDocument.GetPages().Select(p => p.GetText()));
// Split text into chunks (e.g., paragraphs)
var chunks = text.Split(new[] { "\n\n" }, StringSplitOptions.RemoveEmptyEntries);
Step 3: Generate Embeddings Using OpenAI SDK
Use the OpenAI SDK to generate embeddings for each chunk.
using OpenAI;
// Initialize OpenAI client with API key
var openAiClient = new OpenAIClient(Environment.GetEnvironmentVariable("OPENAI_API_KEY"));
// Generate embeddings for each chunk
foreach (var chunk in chunks)
{
var embedding = await openAiClient.Embeddings.GenerateAsync(chunk, "text-embedding-ada-002");
// Store the embedding in a local database or in-memory structure
}
Step 4: Implement Local Embedding Vector Database
Store the generated embeddings in a simple local database or in-memory structure like a dictionary.
using System.Collections.Generic;
// In-memory database example
var embeddingDatabase = new Dictionary();
// Store embeddings
foreach (var chunk in chunks)
{
var embedding = await openAiClient.Embeddings.GenerateAsync(chunk, "text-embedding-ada-002");
embeddingDatabase.Add(chunk, embedding.Vector.ToArray());
}
Step 5: Implement Chat Loop with Microsoft.Extensions.AI
Use Microsoft.Extensions.AI to create a chat loop that queries the local embedding database.
using Microsoft.Extensions.AI;
// Initialize chat client
var chatClient = new OpenAIClient(Environment.GetEnvironmentVariable("OPENAI_API_KEY")).AsChatClient();
// Chat loop
while (true)
{
Console.Write("Enter your question: ");
var query = Console.ReadLine();
if (query == "exit")
break;
// Generate query embedding
var queryEmbedding = await openAiClient.Embeddings.GenerateAsync(query, "text-embedding-ada-002");
// Perform vector similarity search
var similarities = embeddingDatabase.Select(kvp => (Key: kvp.Key, Similarity: CosineSimilarity(queryEmbedding.Vector.ToArray(), kvp.Value)));
// Get top matches
var topMatches = similarities.OrderByDescending(s => s.Similarity).Take(3);
// Display matches
foreach (var match in topMatches)
{
Console.WriteLine($"Match: {match.Key}, Similarity: {match.Similarity:F2}");
}
}
// Cosine similarity function
float CosineSimilarity(float[] vec1, float[] vec2)
{
var dotProduct = vec1.Zip(vec2, (a, b) => a * b).Sum();
var magnitude1 = MathF.Sqrt(vec1.Sum(x => x * x));
var magnitude2 = MathF.Sqrt(vec2.Sum(x => x * x));
return dotProduct / (magnitude1 * magnitude2);
}
Step 6: Run the Application
Run the console application and interact with it by asking questions about the PDF documents.
This setup integrates OpenAI RAG with a local embedding vector database and uses PdfPig for PDF processing, all within a .NET environment enhanced by Microsoft.Extensions.AI for unified AI abstractions.
References:
[1] https://dev.to/petermilovcik/building-a-net-console-app-for-document-search-rag-with-openai-embeddings-5ehh
[2] https://juldhais.net/retrieval-augmented-generation-rag-using-net-and-openai-api-9814d4d5051f
[3] https://devblogs.microsoft.com/dotnet/introducing-microsoft-extensions-ai-preview/
[4] https://learn.microsoft.com/en-us/dotnet/ai/ai-extensions
[5] https://www.confident-ai.com/blog/how-to-build-a-pdf-qa-chatbot-using-openai-and-chromadb
[6] https://blog.gopenai.com/chat-with-pdf-rag-using-openai-4o-and-pinecone-1e6feb451642
[7] https://learn.microsoft.com/en-us/dotnet/ai/conceptual/vector-databases
[8] https://dev.to/petermilovcik/implementing-rag-with-azure-openai-in-net-c-12c2
[9] https://uglytoad.github.io/PdfPig/
[10] https://dev.to/eliotjones/reading-a-pdf-in-c-on-net-core-43ef
[11] https://github.com/openai/openai-dotnet
[12] https://github.com/UglyToad/PdfPig
[13] https://www.reddit.com/r/dotnet/comments/1ciph74/pdf_chunking_for_vector_embeddings_options/
[14] https://github.com/edilma/RAG-App-HackTogether
[15] https://help.openai.com/en/articles/8550641-assistants-api-v2-faq
[16] https://learn.microsoft.com/en-us/samples/azure/azure-sdk-for-net/azureprojects-samples/
[17] https://platform.openai.com/docs/libraries
[18] https://learn.microsoft.com/en-us/azure/ai-services/openai/
[19] https://learn.microsoft.com/en-us/samples/azure-samples/azure-sql-db-session-recommender-v2/azure-sql-db-session-recommender-v2/
[20] https://openai.com/index/new-tools-for-building-agents/
[21] https://www.youtube.com/watch?v=umzMPlaKLQo
[22] https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/use-your-data
[23] https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.ai?view=net-9.0-pp
[24] https://learn.microsoft.com/en-us/dotnet/ai/conceptual/evaluation-libraries
[25] https://github.com/dotnet/extensions/issues/5739
[26] https://github.com/Azure-Samples/aisearch-openai-rag-audio
[27] https://github.com/dotnet/ai-samples/blob/main/src/microsoft-extensions-ai/azure-openai/AzureOpenAIWebAPI/README.md
[28] https://learn.microsoft.com/de-de/dotnet/ai/ai-extensions
[29] https://learn.microsoft.com/en-us/azure/search/retrieval-augmented-generation-overview
[30] https://learn.microsoft.com/en-us/dotnet/api/overview/azure/ai.openai-readme?view=azure-dotnet
[31] https://www.nuget.org/profiles/Microsoft.Extensions.AI.Evaluation
[32] https://learn.microsoft.com/en-us/samples/azure-samples/azure-search-openai-demo/azure-search-openai-demo/
[33] https://www.nuget.org/packages/Microsoft.Extensions.AI.OpenAI/9.3.0-preview.1.25161.3
[34] https://dev.to/focused_dot_io/chat-with-your-pdfs-an-end-to-end-langchain-tutorial-for-building-a-custom-rag-with-openai-part-1-3oi3
[35] https://community.openai.com/t/what-is-the-current-rag-architecture-of-openai-for-pdf-uploads/878636
[36] https://pdf.ai
[37] https://cookbook.openai.com/examples/file_search_responses
[38] https://chatdoc.com
[39] https://cookbook.openai.com/examples/parse_pdf_docs_for_rag
[40] https://monica.im/webapp/doc-chat
[41] https://www.youtube.com/watch?v=kC-Dzy4nADI
[42] https://www.youtube.com/watch?v=hSQY4N1u3v0
[43] https://community.openai.com/t/using-large-pdfs-to-make-a-chatbot/372228
[44] https://smallpdf.com/chat-pdf
[45] https://help.openai.com/en/articles/8868588-retrieval-augmented-generation-rag-and-semantic-search-for-gpts
[46] https://www.reddit.com/r/vectordatabase/comments/1hzovpy/best_vector_database_for_rag/
[47] https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/rag/rag-generate-embeddings
[48] https://www.heise.de/ratgeber/RAG-mit-deutschsprachigen-Embedding-Modellen-aufsetzen-10231709.html
[49] https://jasonhaley.com/2024/02/07/simple-rag-sql-openai/
[50] https://www.timescale.com/blog/finding-the-best-open-source-embedding-model-for-rag
[51] https://github.com/microsoft/generative-ai-for-beginners/blob/main/15-rag-and-vector-databases/README.md?WT.mc_id=academic-105485-koreyst
[52] https://github.com/mmr116/document-search-using-vector-embeddings-openai-rag
[53] https://autoize.com/retrieval-augmented-generation-rag-with-local-embeddings/
[54] https://www.reddit.com/r/LocalLLaMA/comments/18j39qt/what_embedding_models_are_you_using_for_rag/
[55] https://community.openai.com/t/best-vector-database-to-use-with-rag/615350
[56] https://stackoverflow.com/questions/72880545/get-text-line-by-line-from-pdf-using-c-sharp
[57] https://stackoverflow.com/questions/79555503/how-can-i-extract-text-and-images-from-pdf-files-in-net-core
[58] https://www.reddit.com/r/dotnet/comments/17svth5/how_to_get_all_text_from_pdf_fasterimage_with/
[59] https://www.nuget.org/packages/PdfPig/0.1.4
[60] https://news.ycombinator.com/item?id=21256814
[61] https://github.com/UglyToad/PdfPig/issues/319
[62] https://stackoverflow.com/questions/77469097/how-can-i-process-a-pdf-using-openais-apis-gpts
[63] https://stackoverflow.com/questions/69798017/split-large-pdf-file-in-to-multiple-pdfs-in-c-sharp
[64] https://www.reddit.com/r/csharp/comments/vlk1g1/extract_text_from_pdf_file_blazor/
[65] https://github.com/UglyToad/PdfPig/discussions/374
[66] https://ironpdf.com/blog/compare-to-other-components/pdfpig-csharp-alternatives/
[67] https://www.nuget.org/packages/PdfPig/0.1.8-alpha-20230605-7fe5f
[68] https://liblab.com/docs/tutorials/others/rag-with-sdk
[69] https://developer.auth0.com/resources/labs/authorization/securing-a-rag-app-with-open-ai-and-fga-in-python
[70] https://learn.microsoft.com/en-us/dotnet/core/extensions/artificial-intelligence
[71] https://learn.microsoft.com/en-us/dotnet/ai/quickstarts/quickstart-azure-openai-tool
[72] https://learn.microsoft.com/en-us/answers/questions/2136354/azure-openai-agentic-ai-semantic-kernel-rag-integr
[73] https://learn.microsoft.com/de-de/dotnet/ai/quickstarts/quickstart-azure-openai-tool
[74] https://learn.microsoft.com/en-us/dotnet/ai/quickstarts/build-chat-app
[75] https://www.reddit.com/r/aipromptprogramming/comments/13oea8y/ways_to_integrate_pdf_file_content_into_my_own/
[76] https://www.textcontrol.com/blog/2024/02/23/ask-pdf-a-generative-ai-application-for-pdf-documents-using-tx-text-control-and-openai-functions-in-c-sharp/
[77] https://www.youtube.com/watch?v=jH2tuFSDZUg
[78] https://www.chatpdf.com
[79] https://community.openai.com/t/which-is-the-best-approach-to-do-chat-with-pdf-application-rag-fine-tuning-open-ai-assistant/943686
[80] https://www.matillion.com/blog/a-deep-dive-into-embedding-and-retrieval-augmented-generation-rag
[81] https://learn.microsoft.com/en-us/dotnet/ai/tutorials/tutorial-ai-vector-search
[82] https://thecodeman.net/posts/how-to-implement-rag-in-dotnet
[83] https://dev.to/aknox/local-langflow-a-vector-rag-application-running-locally-c52
[84] https://wandb.ai/mostafaibrahim17/ml-articles/reports/Vector-Embeddings-in-RAG-Applications--Vmlldzo3OTk1NDA5
Answer from Perplexity: pplx.ai/share