Python is the language of choice for most Machine Learning code, but I prefer to run my back-end services using NodeJS. I'm currently working on a Node based project where I need to call the HuggingFace Diffusers module. So I have implemented an IPC wrapper around the Python script.

It works by sending JSON messages back and forth over stdin/out using U+0000 (NULL,\0) as a delimeter. This is one of the few characters that must be escaped in valid JSON. So we can be confident that no response should contain this character.

Since the Python script is blocking, we can send an arbitrary number of messages to it and they will be automatically buffered until the process can handle them.

Responses from the Python process are manually buffered until we receive the null byte and then decoded.

The Node Side

import { spawn } from 'child_process';
import { dirname, join } from 'path';
import { fileURLToPath } from 'url';

// Start the Python process
const __dirname = dirname(fileURLToPath(import.meta.url));
const pythonProcess = spawn('python3', [join(__dirname, 'example.py')]);

// Buffer for incomplete messages
let buffer = '';

// Handle incoming messages from Python
pythonProcess.stdout.on('data', (data) => {
    // Split incoming data on null bytes
    const messages = (buffer + data.toString()).split('\0');

    // Store incomplete message
    buffer = messages.pop();

    // Process complete messages
    for (const message of messages) {
        try {
            const response = JSON.parse(message);
            console.log('Received from Python:', response);
        } catch (error) {
            console.error('Parse error:', error);
        }
    }
});

// Handle Python errors
pythonProcess.stderr.on('data', (data) => {
    console.error('Python stderr:', data.toString());
});

// Send messages to Python
function sendToPython(message) {
    pythonProcess.stdin.write(JSON.stringify(message) + '\n');
}

// Test the communication
sendToPython({ type: "test", message: "Hello Python!" });

The Python Side

import sys
import json
import time

def log_message(message):
    # Write messages with null terminator as delimiter
    sys.stdout.buffer.write(json.dumps(message).encode() + b'\0')
    sys.stdout.buffer.flush()

if __name__ == "__main__":
    log_message({"status": "ready"})

    # Loop forever to keep the process active
    while True:
        try:
            # Read input from Node
            data = json.loads(input())

            # Echo back with timestamp
            log_message({
                "status": "success",
                "received": data,p
                "timestamp": time.time()
            })

        except Exception as e:
            log_message({
                "status": "error",
                "message": str(e)
            })

This is bare-bones example of how to accomplish this. Stay tuned for more details about this project in the near future.