Struggling to find info buried deep in your company's documents? Let’s build a chatbot that can understand your questions and retrieve accurate answers from thousands of PDFs, manuals, and wikis—powered by LLMs + Vector Databases.
🔍 What We'll Build
A semantic search-based chatbot that can answer employee questions like:
- “What’s the company’s remote work policy?”
- “How do I request PTO?”
- “Where’s the VPN setup guide?”
No more digging through folders. Just ask.
🧠 How It Works
We’ll use a Retrieval-Augmented Generation (RAG) architecture:
- 📄 Split documents into chunks
- 🔢 Embed them using OpenAI or Sentence-BERT
- 🧠 Store in a vector database (e.g., Chroma, FAISS, Pinecone)
- 🤖 Search similar chunks based on user queries
- 💬 Generate answers with GPT-4 using the retrieved context
⚙️ Tech Stack
Component | Tool |
---|---|
Embedding Model | OpenAI or Sentence-BERT |
Vector Database | Chroma (local & fast) |
LLM | OpenAI GPT-4 |
Loader & Splitter | LangChain utilities |
Optional Frontend | Streamlit or FastAPI |
🧪 Step-by-Step Code Example
pip install langchain openai chromadb
from langchain.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
# 1. Load documents
loader = DirectoryLoader('./docs') # Folder of .txt or PDFs
documents = loader.load()
# 2. Split into chunks
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
docs = splitter.split_documents(documents)
# 3. Embed and store
embeddings = OpenAIEmbeddings()
vectordb = Chroma.from_documents(docs, embeddings)
# 4. Query from user
query = "What is the company’s policy on remote work?"
retrieved_docs = vectordb.similarity_search(query, k=3)
# 5. Generate answer using LLM
llm = ChatOpenAI(temperature=0)
qa_chain = load_qa_with_sources_chain(llm, chain_type="stuff")
result = qa_chain.run(input_documents=retrieved_docs, question=query)
print(result)
🚀 Ready to Scale?
For production, consider using:
- ✅ Pinecone or Weaviate for scalable vector storage
- 🔒 Secure LLMs with prompt templates
- 🖥️ Frontend using Streamlit or chatbot widget
📚 Real-World Use Cases
- HR Knowledgebase Assistant
- Legal Document Search Bot
- Customer Support Answer Bot
- Onboarding Helpdesk
🙌 Wrapping Up
By combining LLMs + vector embeddings, you unlock next-level document search—context-aware, semantically smart, and actually useful.
Got questions or building your own chatbot? Let’s connect in the comments! 💬